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Abstract: Over the past few years, ZnO nanoparticles have attracted great attention due to their biocompatibility and low 

cost. A number of investigations demonstrated their potential applications in biotechnology and biomedicine. This review 

presents the current biological applications of ZnO nanoparticles, including biological imaging, drug releasing and  

biosensing, as well as their advantages and limitations in these areas. In addition, the toxicity of ZnO nanoparticles is  

discussed in comparison with other conventional nanoparticles. 
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1. INTRODUCTION 

 Semiconductor nanocrystals have unique physical and 
chemical properties that show significant advantages in bio-
logical and biomedical applications, especially in bio-
imaging, drug delivery and biosensing fields. These proper-
ties are based on the size similarity with biomolecules such 
as proteins and polynucleic acids, large surface to volume 
ratios, fluorescent and magnetic behaviors, and quantum size 
effects [1-6]. However, most semiconductor nanocrystals 
have not been applied practically in biological and medical 
areas because of their potential toxicity and poor biocompa-
bility. In the past decades, plenty of investigations have been 
done to explore biocompatible substitute materials. ZnO 
nanoparticles, as low cost and low toxic materials, have 
shown promising performances in biomedical experiments. 

 Here, we present a brief review of current research activi-
ties that concentrate on the biomedical applications of ZnO 
nanocrystals, including bioimaging, drug delivery and bio-
sensing applications. We also discuss the toxicity of ZnO 
nanocrystals and give a future outlook. 

2. ZNO NANOPARTICLES FOR BIOLOGICAL IM-
AGING  

 Various imaging technologies have become increasingly 
important to understand the information of biological and 
clinical phenomena in cells or on molecular level. Current 
bioimaging technologies include fluorescence imaging, 
magnetic resonance imaging, computed tomography, ultra-
sound, and positron emission tomography [7]. Among these 
imaging technologies, fluorescence imaging technologies 
have been widely used in preclinical researches for its low 
expense, high sensitivity, no radiation and facile measure-
ment. Since cells are almost transparent to visible light and 
individual macromolecules are too small to be observed with  
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optical microscopy, it is very important to take advantage of 
fluorescence probes to visualize biomolecules and compart-
ments within cells. In comparison with conventional fluores-
cence probes of organic dyes, photoluminescent nanocrystals 
exhibit great advantages due to their properties of high quan-
tum yield, broad absorption, narrow and symmetric emission 
band, large effective Stokes shifts, high resistance to pho-
tobleaching and chemical degradation, size-tunable lumines-
cence and so forth [1, 3, 6, 8-12]. However, the traditional 
CdSe and CdTe nanocrystals have great toxicity to the bio-
logical systems. Although various protections have been 
developed, the leakage of Cd ions through the shell defect is 
still observed, and the destructive reactive oxygen species 
(ROS) are easily produced by these nanoparticles, especially 
under light irradiation [13-17]. 

 As one kind of versatile materials, ZnO nanocrystals 
have attracted great attention of scientists, not only because 
of their exceptional semi-conducting, optical and piezoelec-
tric properties, but also because of their biological safety and 
low cost. Zinc is a very important trace element in human 
body and plays an important role in many biological sys-
tems. The average adult body contains 3.0–4.5 10

2
mmol of 

zinc and adult men and women need 9.5mg and 7.0mg of 
Zn

2+
 per day, respectively [18]. ZnO is listed as safe matter 

by the US Food and Drug Administration (21CFR182.8991). 
Therefore, ZnO holds a tremendous potential for biological 
and biomedical applications. 

 However, only a few literatures have reported the suc-
cessful biolabeling applications of ZnO nanocrystals so far. 
The main reason is that the conventional ZnO nanoparticles 
are unstable in water. The physical or chemical properties of 
ZnO nanoparticles are often determined by the synthetic 
methods and modification materials. For example, ZnO 
nanocrystals prepared by sol-gel methods usually exhibit 
strong visible fluorescence. Such products have a potential 
for biological applications [22]. Several sol-gel methods 
have been developed to synthesize ZnO nanocrystals through 
hydrolysis of zinc salts in alcohol solvents, i.e. ethanol [23], 
triethylene glycol (TEG) [24-27], diethylene glycol (DEG) 
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[28], tetraethylene glycol [28], 2-propanol [29]
 
or polyethyl-

ene glycol (PEG) [31, 32].
 
But these products are bare and 

the luminescent centers on the ZnO nanocrystals surface are 
easily destroyed by water molecules. Furthermore, they tend 
to aggregate or undergo Ostwald ripening owing to their high 
surface energy [32].

 
Surface modification is widely em-

ployed to solve these problems. The hydroxyl groups on the 
surface of ZnO nanocrystals make them functionalized read-
ily by surface coating materials, such as oleic acid (OA) [25, 
26, 33], polystyrene (PS) [34, 35], poly(methylmethacrylate) 
(PMMA) [34, 36], (3-(2,3-epoxy-propoxy)propyl)trimeth- 
oxysilane [37], polyvinylpyrrolidone (PVP) [38, 39] etc. 
These modified ZnO nanocrystals are stable but usually 
show blue emission and they are only dispersed in organic 
solvents, which was unfit for biological experiments. Water-
dispersible ZnO nanocrystals have been developed, via using 
modification materials of poly(ethylene glycol) methyl ether 
methacrylate (PEGMEMA) [19], poly(ethylene glycol 
methyl ether) (PEGME) [40], hyperbranched polymers [41], 
silane coupling agents [21, 26, 32, 37, 42-47], poly(amido-
amine) (PAMAM) dendrons [46] etc. There are still unre-
solved problems. For example, the quantum yield of the ZnO 
nanocrystals often decreases sharply after modification. Al-

though the luminescence mechanism of ZnO nanocrystals 
has not been understood clearly, a widely accepted one is 
that the visible luminescence is from the surface defects of 
ZnO nanocrystals [22, 32, 48-50]. In the processes of modi-
fication, surface defects may be passivated by ligands and 
thus leading to some decrease of luminescence intensity of 
ZnO nanocrystals [32, 48, 50, 51]. Furthermore, the lumines-
cence stability of ZnO nanocrystals is not solved perfectly, 
especially when dispersed in the buffer solutions or cell me-
diums [21]. Another question is how to graft functional 
groups on ZnO nanoparticle surface for further bioconjuga-
tion. ZnO nanomaterials with –NH2 groups, -COOH groups 
or –SH groups are optimal for further bioconjugation, but the 
bioconjugation conditions are always limited by the stability 
of ZnO nanocrystals. For these reasons, few articles reported 
the bioimaging of ZnO nanocrystals especially in vivo 
applications, as shown in (Table 1).  

 Our group obtained water-stable ZnO@PEGMEMA 
quantum dots(QDs) and successfully applied them as a fluo-
rescence probe in vitro (Fig. 1) and in vivo (Fig. 2). To our 
knowledge, this is the first time using ZnO QDs as fluores-
cence probes in vitro. Thereafter, we further improved the 

Table 1. Current researches on biological imaging applications of ZnO nanomaterials. 

Surface modification materials Models Mode Imaging modality Ref. 

Vinyltriethoxysilane, TEOS, APTES Hela cells In vitro Confocal scanning laser microscopy [21] 

Blood cells of Zebrafish In vitro No surface treatment or modification 

The seeds of A. thaliana. In vivo 

Nonlinear optical imaging  [52] 

Using phospholipid micelles as the stabilizer 

and treated with target folic acid (FA) 

KB cells In vitro Nonresonant nonlinear optical imaging [53] 

PEGMEMA BALB/ca nude mice In vivo Laser confocal microscope [20] 

APTES, diglycolic anhydride MDA-MB-231 cells In vitro Fluorescence microcopy [54] 

U87MG and MCF-7 cells In vitro 3-mercaptopropionic acid, Maleimide-

polyethylene, glycol-succinimidylcarboxy 

methyl ester, PEG-RGD 
Female Balb/c mice In vivo 

Fluorescence microscopy and positron 

emission tomography 

[18] 

No modification K562 cells In vitro fluorescence microscopy equipped 

with laser beams 

[55] 

TiO2 or TEOS The mung bean (Vigna radiate) seeds In vivo Confocal scanning laser microscopy [56] 

APTES, Grafted by carbon nanoparticles S. aureus In vivo Fluorescence microscopy [57] 

Poly(2-(dimethylamino)ethyl methacrylate COS-7 cells In vitro Confocal scanning laser microscopy [58] 

AEAPS Hela cells In vitro Confocal scanning laser micros-

copy;Magnetic resonance imaging 

[59] 

PEGMEMA QGY 7763 In vitro Confocal scanning laser microscopy [19] 

TEOS and 3-[2-(aminoethyl)aminopropyl] 

trimethoxysilane 

NIH/3T3 In vitro Confocal scanning disk microscopy [44] 

Poly(amidoamine) dendrimers Escherichia coli MG1655 In vivo Laser scanning head coupled with an 

inverted microscopy 

[46] 

APTES, FA, Doxorubicin Hela cells In vitro Confocal scanning laser microscopy [60] 

Stearate and TREG NIH/3T3 In vitro Confocal scanning disk microscopy  [24] 
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stability of ZnO QDs by a three-step silanization method and 
got remarkable products, which can be stable in water, PBS 
and cell medium, ensuring the feasibility of their further bio-
conjugation and applications (Figs. 3 and 4). 

 Most bioimaging applications in the above reports are 
based on single photon UV excitation, which is not effective 
for deep tissue imaging in vivo due to the reduced penetra-

tion depth, absorption and scattering of optical signals. Short 
wavelength excitation often leads to autofluorescence of 
cells and tissues, making imaging and tracking more diffi-
cult. Besides, the blinking phenomenon of these nanoparti-
cles makes it difficult to implement [61-63]. 

 Although it is limited to use ZnO nanocrystals as bioi-
maging probes under a linear excitation condition, their non-

 

Fig. (1). The upper part are the HRTEM image of ZnO-1 with the 

inset of ED pattern (left) and the aqueous solutions of ZnO-1 and 

ZnO-2 under a UV light (right); The middle part and the lower part 

are the DIC pictures (left) and the fluorescent images (right) of the 

cancer cells labeled by ZnO-1 and ZnO-2 respectively. Reprinted 

with permission from Ref. [19]. Copyright 2008 American Chemi-
cal Society. 

 

 
Fig. (2). (A) A mouse under UV light after intradermal injection of 

ZnO@polymer nanoparticles. (B) An intravenously injected mouse 

was sacrificed and imaged under UV light. Note that ZnO fluores-

cencelocates mainly in the aorta, liver and kidney. Reprinted with 

permission from Ref. [20], Copyright 2011 John Wiley & Sons, 
Ltd. 

 

Fig. (3). Photoluminescent spectra and absorption spectra of (A) 

ZnO-A@silica (blue-emitting), (B) ZnO-B@silica (green-emitting) 

and (C) ZnO-C@silica (yellow-emitting) in water, with a photo-

graph of these samples under a UV lamp. Reprinted with permis-

sion from Ref. [21]. Copyright 2012 Royal Society of Chemistry. 

 

 
Fig. (4). Confocal luminescence images of HeLa cells incubated 

with (A) ZnO-A@silica (blue-emitting), (B) ZnO-B@silica (green-

emitting) and (C) ZnO-C@silica (yellow-emitting) under UV light 

of 365 nm. The left pictures arefluorescent images of HeLa cells 

while the right pictures are the corresponding DIC images. Re-

printed with permission from Ref. [21]. Copyright 2012.-9.Royal 
Society of Chemistry. 
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linear properties make up these limitations. Nonlinear optical 
processes for live cells and tissues imaging include two (or 
multi) photon excited fluorescence, second and third har-
monic generation, vibration coherent anti-stokes Raman scat-
tering and so on [53, 62]. The nonlinear nature of interac-
tions can provide a high 3-D spatial resolution, improve sig-
nal-to-noise ratio, increase the imaging depth by using near 
infrared excitation, and reduce thermal interaction and stress 
in biological systems.  

 The most common nonlinear optical process in bioimag-
ing is two photon excited fluorescence, which is a resonant 
process. Two-photon excitation or multiphoton fluorescence 
imaging using infrared excitation allows ZnO nanoparticles 
to overcome the barrier of high-energy excitation wave-
lengths, and harmonic generation processes help eliminate 
blinking [52, 62, 63]. However, an efficient two photon ex-
cited fluorescence is correlated with two photon resonance 
and limited to specific wavelengths. Fortunately, researchers 
have developed a new bioimaging modality as supplemen-
tary by using second harmonic generation (SHG). SHG is a 
property of certain crystals and molecules that exhibit bire-
fringence and noncentrosymmery under lattice inversion, and 
it occurs under strict phase matching conditions in conven-
tional optical materials [52]. More importantly, SHG is a 
nonresonance nonlinear process and can offer new advan-
tages over two photon bioimaging in terms of no requirement 
of conventional phase matching, no cell damage because of 
their nonradiative decay pathway, no autofluorescence by the 
proper choice of the excitation wavelength depending on the 
constituents of the appropriate biological media, and no need 
for confocal microscopy [64, 65]. 

 Biocompatible ZnO nanocrystals have not only multipho-
ton absorption ability, but also SHG for their noncentro-
symmetric structure [66]. The SHG created in high-quality 
ZnO nanoparticles can be efficient for bioimaging in vitro 
and for tracking and imaging targets to a certain depth in 
vivo. Kachynski et al. [53] first reported utilization of ZnO 
nanocrystals as targeted nonlinear optical probes for bioi-
maging (Fig. 5). They demonstrated the application of pho-
tostable water-dispersible ZnO-FA nanoparticles encapsu-
lated in phospholipid micelles for high contrast nonresonant 
nonlinear optical bioimaging in human KB cells, which are 
known to overexpress receptors for folic acid. The SFG and 
SHG imaging signals are rather robust from live KB cells 
treated with targeted ZnO nanoparticles when compared with 
those of the nontargeted ZnO nanocrystals. Urban et al. [52] 
demonstrated the imaging of the SHG of highly optical non-
linear susceptible ZnO nanoparticles in vitro in the blood 
cells of zebrafish. More important fact was that they success-
fully got the SHG imaging in vivo of a germinating roots and 
shoots of Arabidopsis plants, which is not possible to ob-
serve using conventional fluorescence microscopy, for the 
seed coat prevents the penetration of UV-visible light. As the 
intensity of the ZnO SHG has a positive correlation with 
crystal quality, it is important to prepare high quality ZnO 
nanocrystals. The preparation of uniform isotropic water-
dispersed of ZnO nanocrystals with high crystal quality will 
be an important research field in the future. 

 Multimodal nanoprobes can provide more accurate and 
detailed information than monomodal ones. For example, 

articles about MRI and fluorescence imaging dual mode 
nanoprobes are increasing in the past years [7, 59, 68-73]. 
Noninvasive MRI is one of most powerful techniques for 
both clinic and basic researches. It can penetrate deep into 
tissue, and provide a wealth of spatial and temporal resolu-
tion. Besides, it does no harm to the patient. The drawback is 
its low sensitivity. In contrast, fluorescence imaging has 
much higher sensitivity and a potential for real-time imaging 
but limited depth perception. Therefore, it is a promising 
approach to integrate magnetic resonance and optical imag-
ing functionalities into one nanocrystal to overcome both of 
their limitations. Though large amount of researches focus 
on doped-ZnO nanocrystals, very few of them concern their 
multimodal imaging applications. Wu et al. [74] reported the 
synthesis and surface modification of Co-doped ZnO nanoc-
rystals and proved their applications as dual color imaging 
agents on human osteosarcoma (Mg-63). Liu et al. [59] fab-
ricated Gd-doped ZnO QDs with silica coating and found 
that Gd doping caused yellow emission significantly en-
hanced. They proved the successful labeling of Hela cells in 

 

Fig. (5). (a-d) SFG images of KB cells treated by ZnO nanoparti-

cles not targeted (a and c) and targeted with FA (b and d) after 1 h 

(a and b) and 3 h (c and d) of incubation. The intensity-coded SFG 

images (see scale inset in panel d) were super imposed on the 

transmission 1064 nm green background images. (e) FWM image 

without transmission background and (f) corresponding SFG im-

age of KB cells. Reprinted with permission from Ref. [53], Copy-
right 2010 American Chemical Society. 
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short time using these QDs as fluorescence and magnetic 
resonance imaging dual mode nanoprobes, which exert 
strong positive contrast effect with a large longitudinal relax-
ivity (r1) of water proton of 16mm

-1
s

-1
 in MRI studies (Figs. 

6 and 7). 

3. ZNO NANOPARTICLES FOR DRUG DELIVERY  

 Anticancer drugs in the traditional chemotherapy often 
show low efficacy and toxic adverse effects because they 
have no selectivity between cancer cells and healthy cells. 
Nanocarriers, which can recognize cancer cells or tumor  
issues, have been employed extensively to deliver anticancer 
drugs to overcome such drawbacks [75]. Deliberate modifi-
cation of nanocarriers with ligands can make the drug-
nanocarries system bind to receptors over-expressed on tu-
mor cells specifically. The interaction between drug and 
nanocarries include physical adsorption, electrostatic interac-
tion, -  stacking and so on [11, 75, 76]. All of the above 
interaction forces are weak non-convalent forces and the 
large surface to volume ratio does a favor to these interac-
tions. When the drug-nanocarriers reach the target sites, the 
host and guests interactions are broken to release the drug, 
and thus the drug concentrations at the target sits are im-
proved and the relevant toxicity and adverse effects towards 
normal cells and tissues are suppressed. Biocompatible ZnO 
nanocrystals degrade readily in moderately acidic environ-

ment, making them suitable for pH-responsive systems. The 
extracellular mildly acidic environment in solid tumor tissues 
and intracellular compartments such as endosomes and 
lysosomes provide ideal conditions for drug-ZnO nanocarri-
ers. 

 Doxorubicin (DOX), commonly used in cancer chemo-
therapy, is widely investigated in the pH-responsive DOX-
ZnO nanocarriers systems. These systems could be advanta-
geous, since the relatively low pH in tumors will specifically 
stimulate the DOX release in the target site (Figs. 8 and 9). 
Yuan et al. [77]

 
fabricated a kind of blue-emitting ZnO-QD–

chitosan–folate carrier with long-term stability and water 
dispersed for tumor-targeted drug (DOX) delivery and found 
the drug-loading efficiency was 75%. Muhammad et al. [60]

 

fabricated pH-responsive ZnO-FA (QDs) with water-stable 
and highly luminescent as biolabelings and targeted carriers 
for DOX. The surface folic acid ligands lead the drug-
nanocarries system to binding to tumor cells. This ZnO QDs 
remained stable at physiological pH, but in acidic intracellu-
lar environments of cancer cells, DOX was instantly released 
through complex dissociation and dissolution of ZnO QDs, 
and consequently, killing the cancer cells. Pulsatile release 
by ultrasound irradiation can be also used in DOX-ZnO 
nanocarriers systems for controlled and targeted drug deliv-
ery, as Barick and coworkers [76] found. Furthermore, ZnO 
nanocrystals in the DOX-ZnO nanocarriers systems not only 

 

Fig. (6). (a) Fluorescence emission spectra of Gd-doped ZnO QDs with different molar ratios of Gd/Zn at an excitation wavelength of 340 

nm. (b) Fluorescence of Gd-doped ZnO QDs with different molar ratios of Gd/Zn under UV light at 365 nm. Reprinted with permission from 
Ref. [59], Copyright 2011 Elsevier. 
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behave as nanocarriers but also exhibited significant antitu-
mor activities [78]. Our recent investigation demonstrated 
that the cytotoxicity of ZnO@Polymer-DOX increased sig-
nificantly when compared with DOX and ZnO@Polymer 
[79]. The combination of DOX with ZnO QDs help DOX 
uptaken by cancer cells to reach higher concentration inside 
cells, and the decomposition of ZnO release toxic Zn

2+
 ions 

and reactive oxygen species (ROS) to enhance the cytotoxic-
ity, as shown in (Fig. 9). Therefore, it is possible to apply 
drug-ZnO nanocarriers systems for chemotherapy. 

 Zhang et al. [80] combined ZnO nanorods with anticancer 
drug daunorubicin (DNR) and applied them in photodynamic 
therapy (PDT) and demonstrated that this combination system 
improved the anti-tumor activity remarkably with UV illumi-
nation. The notable photodynamic activity of ZnO nanorods 
could considerably increase human hepatocarcinoma cells 
(SMMC -7721 cells) injury mediated by ROS. Hackenberg 
and coworkers [81] proved UVA-1-activated ZnO-NPs in 
combination with paclitaxel and cisplatin induce tumor-
selective cell death in human squamous cell carcinoma 

 

Fig. (7). (a) T1-weighted magnetic resonance image for various Gd
3+

 concentrations of Gd-doped ZnO QDs (molar ratios of Gd/Zn: 0.08) in 

water from a 1.5 T clinical MRI system. (b) The linear relationship between T1 relaxation rates (1/T1) and Gd
3+

 ion concentrations for Gd-

doped ZnO QDs (molar ratios of Gd/Zn: 0.08). (c) T1-weighted image of blank HeLa cells pellet (left) and HeLa cells incubated with Gd-

doped ZnO QDs at 0.01 M Gd
3+

 ions for 2 h. Reprinted with permission from Ref. [67], Copyright 2011 Elsevier. 
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(HNSCC) in vitro, and indicated that photocatalytic therapy of 
HNSCC with ZnO-NPs could enhance the cytotoxic action of 
chemotherapeutic agents synergistically, especially under UV 
excitation condition. Muhammad et al. [82] demonstrated the 
potential of ZnO NPs in photodynamic therapeutic applica-
tions. They conjugated nanoporous zinc oxide (ZnO NPs) with 
Photofrin for efficient intracellular drug delivery in photody-
namic therapy. These ZnO NPs complex could emit 625 nm 
red light in the presence of Photofrin with 240 nm UV light 

excited intracellularly, and activated a chemical reaction that 
produced reactive oxygen species (ROS), leading to the death 
of A-549 lung carcinoma cells within a few minutes. Moreo-
ver, the ZnO NPs conjugated with Photofrin under UV light 
exposure displayed valuable cytotoxic effects as compared to 
Photofrin alone.  

 Though lots of investigations reported the size of ZnO 
nanocrystal contributes little to their toxicity, some found 

 
Fig. (8). Schematic illustration of the synthesis of ZnO@MSNs-DOX and working protocol for pH-triggered release of the anticancer drug 

(DOX) from ZnO@MSNs-DOX to the cytosol via selective dissolution of ZnO QDs in the acidic intracellular compartments of cancer cells. 

Reprinted with permission from Ref. [78], Copyright 2011 American Chemical Society. 

 

 

Fig. (9). Schematic illustration of the cytotoxicity mechanism of ZnO@Polymer-DOX.Reprinted with permission from Ref. [79], Copyright 
2013 John Wiley & Sons, Ltd. 
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that under UV irradiation, the effect of size fact is signifi-
cant. Guo and coworkers [83] explored the cytotoxic effect 
of anticancer drug daunorubicin on leukemia cancer cells in 
the absence or presence of different sized ZnO nanoparticles, 
with or without UV irradiation. They found that the combi-
nation of ZnO nanoparticles and daunorubicin under UV 
irradiation have synergistic cytotoxic effect on leukemia 
cancer cells. The cytotoxicity of ZnO nanoparticles to leu-
kemia K562 and K562/A02 cancer cells was dose-
dependent. With the aid of ZnO nanoparticles, cellular up-
take of daunorubicin apparently enhanced. UV irradiation 
could enhance the proliferation suppression ability of ZnO 
nanoparticles on cancer cells and the cytotoxicity suppres-
sion of daunorubicin on both leukemia cell lines exposed to 
the ZnO nanoparticles solutions. Li and coworkers [84]

 
ex-

plored the cytotoxicity and photodynamic effect of different-
sized ZnO nanoparticles to target cells and demonstrated that 
ZnO nanoparticles exerted dose-dependent and time-
dependent cytotoxicity for cancer cells like hepatocellular 
carcinoma SMMC-7721 cells in vitro. The size-depended 
effect was not clear in the scope from 20 to 100 nm without 
UV irradiation. UV irradiation could enhance the suppres-
sion ability of ZnO nanoparticles on cancer cells prolifera-
tion, and these effects were in the size-dependent manner, 
while the smaller the nanoparticle size, the higher the cyto-
toxicity of cancer cell proliferation caused by ZnO nanopar-
ticle. Furthermore, when ZnO nanoparticles combined with 
daunorubicin, the related cytotoxicity of anticancer agents on 
cancer cells was evidently enhanced. Palanikumar and co-
workers [85]

 
used ZnO nanoparticles as a carrier for amox-

icillin drug delivery system. The amoxicillin-loaded zinc 
oxide nanoparticles have good antibacterial activities against 
infectious Gram-positive and Gram-negative bacteria. The 
antimicrobial property increases with increasing in the drug 
loading, which depends on the size of nanoparticles, concen-
trations of drug, and stirring time. 

 However, the size effect mechanism of the drug-ZnO 

nanocarriers system under UV irradiation is not clear. We 
hypothesize that the smaller ZnO nanocrystals have larger 

surface to volume ratio, so more defects on the surface in-

duce more ROS, and Zn
2+

 ions are easier to release, and thus 
leading to more serious toxicity. To utillize this drug-ZnO 

nanocarriers system, we can prepare different ZnO nanocrys-

tals with required characteristics. As Xiao and coworkers 
[86] found that zinc oxide-zinc sulfide quantum dots (ZnO-

ZnS QDs) could increase the affinities for protein selec-

tively, the specificity of the drug-ZnO nanocarriers system 
will have significant applications in the future. Furthermore, 

using ZnO nanocrystals as drug-nanocarriers will realize 

real-time monitoring for drug delivery. 

4. ZNO NANOPARTICLES FOR BIOSENSING 

 The sensing of biological agents, diseases, and toxic ma-

terials is an important goal for biomedical diagnosis, forensic 
analysis, and environmental monitoring. The practical appli-

cations of biosensing technologies, including colorimetric 

sensing, fluorescence sensing, and electrochemical sensing 
require their high quality of sensitivity, selectivity and stabil-

ity. Take enzyme-linked immunosorbent assay (ELISA) for 

example, this assay often uses molecular fluorophores as 

labels, which have low photoluminescence stability. And 

photobleaching may reduce the accuracy of the sensing in-

formation. Besides, the low abundance of protein and the 
limited number of procedures for protein amplification result 

in low sensitivity. In contrary, the unique physicochemical 

properties of semiconductor nanocrystals make them promis-
ing candidates for sensing application. The high photolu-

minecence stability ensures them fluorescence sensing appli-

cation and nanostructure have unique advantages in immobi-
lization enzymes and retaining their bioactivity as a result of 

the high surface area for higher enzyme loading, thus im-

proving the sensitivity.  

 When combined with eletrochemical sensor application, 
semiconductor nanostructures provide the direct electron 
transfer between the enzyme’s active sites and the electrode, 
therefore, offer more accuracy information by integrating 
fluorescent sensor and electrochemical sensor. Semiconduc-
tor ZnO nanocrystals present as one of the most promising 
materials for biosensing application, not only because of 
their good photochemical and electrochemical properties, but 
also for their biocompatibility and low cost. ZnO has been 
utilized for immobilization of proteins, enzymes and anti-
gens for accelerated electron transfer between desired immo-
bilized biomolecules and electrode. As ZnO has a high 
isoelectric point (IEP) of about 9.5, it is suitable for adsorp-
tion of a low IEP protein or enzyme such as glucose oxidase 
[87], tyrosinase [88], transferring [54], rabbit-immunoglubin 
antibodies (r-IgGs) and bovine serum albumin(BSA) [89]

 
in 

proper solutions. Chakraborti et al. [90] showed that ZnO 
NPs are capable of disrupting protein-protein association. 
ZnO NPs bind to the largest cleft on the protein surface, 
thereby helping it to retain the secondary structures to a 
greater degree and exhibit enzymatic activity even under 
denaturing conditions. 

 Some clinical diagnoses require enzyme sensors offering 
high sensitivity and relatively narrow dynamic detection 
range, but some of them need wide linear response range for 
the detection. Since the ZnO nanowire glucose sensor has a 
great feature of the correlations of KM and linear response 
sensitivity (LRS) with the enzyme loadings over a wide 
range, it could be easily tailored to meet the requirements. 
For example, investigation reported that BSA/r-IgGs/nano-
ZnO/indium-tin-oxide (ITO) immunoelectrode exhibits line-
arity as 0.006-0.01nM/dm

3
 with detection limit of 

0.006nM/dm
3
 for ochratoxin-A (OTA) [89]. The single-

crystal ZnO nantube (ZNT)/ITO-based biosensor exhibits 
wide linear calibration ranges from 10 M to 4.2 mM, and a 
low limit of detection (LOD) at 10 M for sensing of glu-
cose [91]. The linear range of ZnO/tyrosinase biosensor for 
phenol determination was from 1.5 10

7
 to 6.5 10

5
mol L

-1
 

with a detection limit of 5.0 10
8
mol L

-1 
[88]. Single ZnO 

nanofiber based glucose biosensor showed a linear range 
from 0.25 to 19 mM with a low limit of detection (LOD) of 1 

M [92]. 

 The ZnO nanostructures based biosensors exhibited good 
performances in terms of response rate, sensitivity, opera-
tional stability, and fabrication simplicity. As the robust me-
chanical adhesion and electrical contact between the nanos-
tructured ZnO and the electrodes realize the direct electron 
transfer between the electrode surface and the redox protein, 
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ZnO nanocrystals can provide a potential powerful platform 
for biosensing application. However, most of current investi-
gations focused on electrochemical biosensing application, 
but scarely on colormetric sensing and fluorescence sensing 
applications (Fig. 10). One of the main reasons is that the 
problems of fluorescence stability are still unsolved. In the 
future, multi-modal application of ZnO nanocrystals will be 
a main investigation direction. When integrating the applica-
tions of bioimaging, biosensing and drug delivery, more ac-
curate information by real-time monitor will be collected to 
understand the mechanism of diseases. 

5. TOXICITY OF ZNO NANOPARTICLES 

 Because of the enormous application promising of nanoc-
rystals, great progress has been made with intensive investi-
gations focusing on synthesis and modification. However, 
researches on their toxicity don’t keep up the same pace. 
Although large bulk ZnO materials are safe, nano-level ZnO 
materials may exhibit different toxicity due to their small 
size and large surface to volume ratio. Before putting them 
into practical applications in biology and biomedicine, it is 

very important to understand how the nanocrystals affect 
organisms, human beings and environment. Large amount of 
investigations demonstrated that ZnO nanocrystals are more 
toxic than Al2O3, SiO2 and TiO2 nanoparticles, though they 
are relatively biocompatible when compared with Cd-based 
QDs (Table 2). The toxicity of ZnO nanocrystals could as-
cribe to the release of Zn

2+
 ions and excess ROS generation 

(Fig. 11) [47, 83, 94-125].
 
But, most of these investigations 

focus on bare ZnO nanocrystals and there are some contra-
dictions referring to which one play a major role in determin-
ing the toxicity. For example, some studies demonstrated 
that the size of ZnO nanocrystals play an important role in 
determining their toxicity, however, the others found that 
there are no different effects between ZnO nanocrystals with 
different sizes [83, 84, 94, 103, 108, 119, 126].

 
Another 

problem is there are not standard methods to evaluate the 
toxicity of nanocrystals. Considering the various resistant 
behaviors of different organisms, and the discrepant organ-
ism responses under different environment, such as culture 
medium or growth intensity [97, 120],

 
we cannot make a 

comparison between those results of reports properly. 

 

Fig. (10). (A) Schematic diagram presenting a collisional quenching mechanism causing decrease in PL intensity of ZnO nanocrystals. (B) 

Characteristic PL response of GOx-immobilized ZnO nanocrystals to glucose concentration (a) and PL peak intensity variation with glucose 

concentration (b). (C) Variation in photoluminescence (PL) spectra with hydrogen peroxide concentration (a) and linear decrease in PL in-
tensity with hydrogen peroxide concentration (b). Reprinted with permission from Ref. [93], Copyright 2011 Royal Society of Chemistry. 
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Table 2. Current researches on cytotoxicity of NPs. 

NPs Models Size of NPs Treatment Viability Ref. 

MPA-CdTe ~10% 

Cys-CdTe ~20% 

NAC-CdTe ~40% 

Cye-CdSe/ZnS 

MCF-7 cells No data 10 μg/mL and 1 hour 

~90% 

[127] 

Cys-CdTe SMMC-7721 cells ~3.5 nm 35.9 nM and 24 hours 50% [128] 

MPA-CdSe/ZnSe 4.63 nm 0.746 nM and 24 hours ~100% 

GA-CdSe/ZnSe 
BALA/3T3 cells 

65.9 nm 0.746 nM and 24 hours ~1% 
[129] 

QSA-CdSe/ZnS 

QSH-CdSe/ZnS 
7-13 nm 400 nm and 24 hours ~100% 

QEI-CdSe/ZnS 8.19 nm 5.14 nmol/L and 24 hours 

QEI-CdSe/ZnS 10.07 nm 3.06 nmol/L and 24 hours 

QEI-CdSe/ZnS 12.78 nm 23.36 nmol/L and 24 hours 

CuInS2/ZnS 

HaCaT cells 

11.14 nm 433.89 nmol/L and 24 hours 

50% 

[130] 

MSA-CdTe HUVECs cells 4 nm 10 μg/mL and 24 hours 50% [131] 

F-68-CdSe 159 nm 400 ppm and 72 hours, more than 80% 

SDS- CdSe 178 nm 100 ppm and 72 hours ~0% 

CTAB-CdSe 

HepG2 cells 

266 nm 50 ppm and 12 hours no more than 50% 

[132] 

MPA-CdSe zebrafish 3.5 nm 1.98 mg/L and 120 hours 50% [133] 

TGA-CdTe zebrafish 3.5 nm 185.9 nM and 120 hours 50% [134] 

MPA-CdTe Escherichia coli No data 7.4-8.8 10-8 mol/L 50% [135] 

70.4 μg/L and 48 hours without UV-B  

irradiation MPA-CdSe/ZnSe 

17.3 μg/L and 48 hours with UV-B irradiation 

95.9 μg/L and 48 hours without UV-B  

irradiation GA- CdSe/ZnSe 

Daphnia magna 65.9 nm 

58.5 μg/L and 48 hours with UV-B irradiation 

50% [136] 

TGA-CdTe Hydra valgaris 3.2 nm 1.4 mg/L and 24 hours 50% [137] 

ZnO HepG2 cells 30 nm 20 μg/mL and 24 hours 43% [138] 

PEGMEMA-ZnO QGY 7763 cells 3-4 nm 0.2 mg/mL and 24 hours more than 90% [19] 

ZnO/SiO2 NIH/3T3 cells 50 nm 30 μg/mL and 24 hours more than 85% [44] 

TREG-ZnO NIH/3T3 cells 2-9 nm 20 μg/mL and 24 hours more than 90% [24] 

ZnO 15.9 mg/L and 24 hours 

OA-ZnO 28.2 mg/L and 24 hours 

PMAA-ZnO 41.4 mg/L and 24 hours 

Medium-ZnO 

WIL2-NS cells 30 nm 

41.8 mg/L and 24 hours 

50% [102] 
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Table (2) contd… 

 

NPs Models Size of NPs Treatment Viability Ref. 

ZnO HELF cells 20-40 nm 20 mg/L and 72 hours lower than 10% [98] 

BEAS-2B cells 40 μg/mL and 24 hours 
~20% for both high and 

low density cells. 

~0% for low  

density cells. 
L-929 cells 20 μg/mL and 24 hours 

~20% for high  

density 

~0% for low  

density cells. 
CRL-292 cells 30 μg/mL and 24 hours 

~70% for high  

density cells. 

ZnO 

C2C12 cells 

10-40 nm 

30 μg/mL and 24 hours 
~0% for both high and 

low density cells. 

[97] 

ZnO LoVo cells 50-70 nm 5 μg/mL and 48 hours less than 50% [106] 

100 nm 43.95 μg/mL and 24 hours 

30 nm 40.41 μg/mL and 24 hours ZnO 
Mouse macrophage Ana-1 

cells 

10-30 nm 30.95 μg/mL and 24 hours 

50% [139] 

Lymphocyte 5 nM and 24 hours 

NK cells 1 nM and 24 hours ZnO 

monocytes 

8 nm 

0.3 nM and 24 hours 

50% [140] 

ZnO 20 nm less than 50% 

TiO2 21 nm ~60% 

SiO2 20 nm ~60% 

Al2O3 

HFL1 cells 

13 nm 

0.5 mg/mL and 48 hours 

~90% 

[125] 

ZnO 10.4 nm 10% 

TOPO-ZnO 15.3 nm 10% 

Brij-76-ZnO 

Euglena gracilis 

12.7 nm 10% 

ZnO 10.4 nm 75% 

TOPO-ZnO 15.3 nm 25% 

Brij-76-ZnO 

Anabaena flos-aquae 

12.7 nm 

10-3 M and 10 days 

75% 

[123] 

ZnO 50-70 nm 0.04 mg Zn/L and 72 hours 

TiO2 25-70 nm 5.83 mg Ti/L and 72 hours 

CuO 

Pseudokirchneriella  

subcapitata 

30 nm 0.71 mg Cu/L and 72hours 

50% [141] 
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 Current cytotoxicity assays include 3-(4,5-dimethylthia- 
zol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for 
colorimetric detection of mitochondrial activity, lactate de-
hydrogenase (LDH) assay for colorimetric detection of LDH 
release, annexic V/propidium iodide for fluorimetric detec-
tion of apoptosis marker and necrosis marker, neutral red for 
colorimetric detection of intact lysosomes, 2’,7’-dichlorod- 
ihydrofluorescen diacetate (DCFH-DA) for fluorimetric de-
tection of ROS production and so on [21, 96, 98, 99, 106, 
143, 144]. But, most reports didn’t mention how to avoid the 
deviation caused by the interaction between ZnO nanocrys-
tals and dyes molecules. Nevertheless, some scientists re-
cently developed researches on the molecular mechanism of 
the ZnO nanocrystals toxicity and demonstrated ZnO nanoc-
rystals may induce apoptosis by p53 pathway [145, 146]

 
or 

inflammatory responses by NF- B signal way [147].
 
ZnO 

nanocrystals may cause cell death as well as carcinogenic 
effect through damaging DNA molecular [96, 99, 102, 105, 
111]. Some researchers even found that nanocrystals can 
damage DNA without contacting the cells directly [148].

 

This phenomenon is worthy of our note in order to avoid 
long-term adverse effect, especially when applied in vivo. 
However, current researches are insufficient because most 
toxicity studies are based on bare ZnO nanocrytals in vitro, 
while there may be little correlation between the toxicity in 
vitro and that in vivo. Furthermore, the surface modification 
materials may change the toxicity of ZnO nanocrystals sig-
nificantly [123, 149]. 

 It is an urgent task to solve these problems for most ZnO 
nanocrystals applied in biology and biomedicine are modi-
fied. The investigations on the toxicity in vivo are very diffi-
cult due to the complex environment in biological systems. 

Zhang et al. [150]
 
developed a method to predict oxidative 

stress and acute pulmonary inflammation using metal oxide 
nanoparticle band gap but not tradition toxicity test assay. 
But to understand the distribution and clearance of nanocrys-
tals in vivo will be the basic work in determining their toxic-
ity and their future investigation directions. Combining syn-
thesis and modification work with toxicity studies will be a 
promising approach to promote the applications of nanocrys-
tals.  

 Just as every coin has two sides, toxic nanocrystals can 
be utilized as anticancer and antibacterial agents. Resistance 
to drugs is a serious problem existing in clinic therapy. As 
discussed above, the toxicity of ZnO nanocrystals mainly 
due to the release of metal ion and ROS, especially under 
UV exposure. Therefore, less resistance to drug may occur 
for cancer cells, when comparing drugs loaded on ZnO 
nanoparticles and those traditional anti-cancer agents. Be-
sides, ZnO nanoparticles can be modified with specific 
groups, and thus, target delivery will be realized to mini-
mize the side effects.  

6. CONCLUSIONS 

 ZnO nanocrystals have been tested in a wide range of 
biological and biomedical applications, especially in bio- 
imaging, drug delivery and biosensinig fields. Nevertheless, 
ZnO nanocrystals have far from exhausted their biological 
and biomedical potentials. Multimodel applications will be a 
major direction in the future. To realize their practice appli-
cations, one important problem is how to obtain water-
dispersible ZnO nanocrytals with high quality, including 
high stability, efficient luminescent intensity and good 
biocompatibility. Another meaningful issue is how to avoid 

Table (2) contd… 

 

NPs Models Size of NPs Treatment Viability Ref. 

ZnO 50-70 nm 1.9 mg/L and 30 min 

CuO 30 nm 79 mg/L and 30 min 

TiO2 

Vibrio fischeri 

25-70 nm 20000 mg/L and 30 min 

ZnO 50-70 nm 3.2 mg/L and 24 hours 

CuO 30 nm 3.2 mg/L and 24 hours 

TiO2  

Daphnia magna 

25-70 nm 20000 mg/L and 24 hours 

ZnO 50-70 nm 0.18 mg/L and 24 hours 

CuO 30 nm 2.1 mg/L and 24 hours 

TiO2 

Thamnocephaluspla  

tyurus 

25-70 nm 20000 mg/L and 24 hours 

50% [119] 

ZnO 20 nm 2.3 mg/L and 24 hours 

Al2O3 60 nm 82 mg/L and 24 hours 

TiO2 

Caenorhabditis elegans 

50 nm 80 mg/L and 24 hours 

50% [142] 

ZnO 50-70 nm 131 mg/L and 24 hours 

CuO 30 nm 13.4 mg/L and 24 hours 
50% 

TiO2 

Saccharomyces cerevisiae 

25-70 nm 20000 mg/L and 24 hours ~100% 

[118] 
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compatibility. Another meaningful issue is how to avoid or 
utilize the toxicity of ZnO nanocrytals in a practical bio-
medical test. All these interesting issues are attracting scien-
tists to put forward researches on ZnO nanoparticles. 
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